Wednesday, October 2, 2019

Sybase :: essays research papers

Table of contents Types of indexes†¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦2 Clustered Index†¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦2 Non-clustered Index†¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦2 Selection of indexes by Optimizer†¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦2 Search Arguments†¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦2 Index Selection†¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦3 Index Distribution Stats†¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦3 Index Density†¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦4 Index Covering†¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦4 Optimization of Cursors†¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦5 Optimization of temp tables†¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦6 Some general rules for optimization†¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦7 Some useful commands†¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦10 Types of indexes Clustered Index (CI) The data in this case is physically stored in the order of the index. The leaf level of the index is the same as the data pages. There can be only one CI on a table as the data can physically be sorted in only one order. The select is extremely efficient with CI. The CI is extremely efficient in the following cases: a) where fname like "Ram%" b) where author_id between 1 and 7 c) where Price > 345.34 d) group by author_id e) order by author_name Non-clustered index (NI) The data in this case is not stored in the order an index is stored. The leaf-level of the index contains the various index keys and a pointer to the row as rowID (page no. + row offset). There can be 249 NI on a table. The NI should be used when a) The number of rows returned is small. b) When where clause limits the number of rows (usually '=' operator) c) When the query can be covered. Selection of indexes by Optimizer SEARCH ARGUMENTS (SARG) These are the expressions on the RHS of the where clause. They act as a kind of (dis)incentive to the optimizer to use the index on the column. Some search arguments are: where author_id = '13' where fname like "Ram%" where Price > 2347.32 Some expressions that are not valid SARGs are: Invalid Valid Price*1.5 = 1000 Price = 1000/1.5 Qty + 10 = 200 Qty = 200 - 10 fname + '' + lname fname = 'John' = "John Gray" and lname = 'Gray' Substring(1,3,fname) = 'KIR' Name like "KIR%" isnull(lname,"N") = "N" lname is null The index might not be used in the case of following SARGs: 1) No start point for the index. where lname like "%abc" 2) Non-matching data-types In SQL server, null and not null are held differently. Char null is same as varchar. So when char null and char not null is compared, the optimizer has to implicitly convert the data type, which it does not at the planning time. In both the above cases, distribution statistics are not used. INDEX SELECTION The optimizer first looks at the query if the columns contained in the where clause match with the columns specified in any of the index. If yes, then it proceeds further. The optimizer then looks if the where clause contains any SARG. If there is a valid SARG, the optimizer then looks for the distribution statistics of the index as:

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.